If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2-2=54
We move all terms to the left:
7p^2-2-(54)=0
We add all the numbers together, and all the variables
7p^2-56=0
a = 7; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·7·(-56)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*7}=\frac{0-28\sqrt{2}}{14} =-\frac{28\sqrt{2}}{14} =-2\sqrt{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*7}=\frac{0+28\sqrt{2}}{14} =\frac{28\sqrt{2}}{14} =2\sqrt{2} $
| x/87=150/100 | | 87/x=100/150 | | (-2x²)³=(-2)³(x²)³ | | x³+10x²+100=0 | | 87/100=x/150 | | 14=2b+b^2 | | 11x+8=-2+9 | | x^2+14x+48=100 | | 4x-5=20x+1 | | 3x+11/7+x+28/6=11 | | 12x(-7)=41 | | x2=7x+3 | | 3x^+6x=0 | | 3x-8=10x+20 | | 3a=5a-8/ | | 18y-22=48 | | 3a=5a-8/5 | | k+7=289 | | 16n=1004n+1= | | 7p/3+6=1 | | 320=-49t+9.8/2t² | | -4.9t²+49t+320=0 | | 8(2x+8)=112 | | 8(2x-8)=112 | | 20x²-15x-10=0 | | x*0.85=154.9 | | 3/4d+4=1/4d18 | | 12-5z=26 | | 2y−5=12 | | x4+9=6 | | 14w+19w-7+6=-3w+6-7 | | H/1=18+5h/7 |