If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-448=0
a = 7; b = 0; c = -448;
Δ = b2-4ac
Δ = 02-4·7·(-448)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-112}{2*7}=\frac{-112}{14} =-8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+112}{2*7}=\frac{112}{14} =8 $
| 1.75c=20 | | 133=7x-2 | | -4u-35=7(u+6) | | -3x+14=-58 | | 21x+5+70=180 | | 501=u-399 | | -7(v-91)=-28 | | 18-b=12 | | -33=3(-5+x) | | x*0.075=29 | | 6/8=20/x | | 9-8x=3x+7 | | 96=5w+11 | | 5x+32=8-8 | | (4-v)-(11+2v=) | | 16=-8u+6(u+3) | | -7(h-82)=-70 | | y+96=180 | | 3x+4+2x+6=0 | | 1/3(3x=9)=5 | | 0+14=t | | 2=u/3-6 | | 2x+3x+x=14 | | 120+34+c=180 | | 5(x-3)+1=5-14 | | (3x-3)+(3x-4)=6x-7 | | 2+(a/4)=6 | | 5.16=3n | | 6x+14=-12+8x | | 3(3.50)+4(1.50)x=40 | | x-2+4x-9=x+5 | | 4x+6x+2x+4=180 |