If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7m^2+m=0
a = 7; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·7·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*7}=\frac{-2}{14} =-1/7 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*7}=\frac{0}{14} =0 $
| −35=86−11x | | -8(n+4)=-28 | | 4-3(x+3)=x | | 1w+8/2=17/2 | | 384=8(7n-1) | | N²×n²=(n+n)² | | −28+3x=−82 | | 21=(-7)m | | t2-2t-20=0 | | 10x+4+1x+2=16 | | m/14=47/70 | | y=1.6+60 | | 4(5x+3)=18x+12+2x | | (x+1)°=(7x-5)° | | x+3(x+6)=-2(x+9) | | 6(z+3)-9=2 | | 8(3x+4)=8(6+4x) | | -18=-9-3/4x | | 8*g=9 | | 180=4(2n-9)+4n | | 8=4u-16 | | 2x−1=x−3 | | (W*2)+(l*2)=30 | | (-17)x=(-204) | | 29=8x+45-8x | | -18=-9-3/4v | | 21/2x-3/4(2x+5)=3/4 | | 66/84=11/y | | 8x+14(x+1)=22(x+1)-8 | | -6x=(-120) | | 50=(0.5)(2)(x) | | s2− –4=6 |