If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2-2t-20=0
We add all the numbers together, and all the variables
t^2-2t-20=0
a = 1; b = -2; c = -20;
Δ = b2-4ac
Δ = -22-4·1·(-20)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{21}}{2*1}=\frac{2-2\sqrt{21}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{21}}{2*1}=\frac{2+2\sqrt{21}}{2} $
| 10x+4+1x+2=16 | | m/14=47/70 | | y=1.6+60 | | 4(5x+3)=18x+12+2x | | (x+1)°=(7x-5)° | | x+3(x+6)=-2(x+9) | | 6(z+3)-9=2 | | 8(3x+4)=8(6+4x) | | -18=-9-3/4x | | 8*g=9 | | 180=4(2n-9)+4n | | 8=4u-16 | | 2x−1=x−3 | | (W*2)+(l*2)=30 | | (-17)x=(-204) | | 29=8x+45-8x | | -18=-9-3/4v | | 21/2x-3/4(2x+5)=3/4 | | 66/84=11/y | | 8x+14(x+1)=22(x+1)-8 | | -6x=(-120) | | 50=(0.5)(2)(x) | | s2− –4=6 | | 2(w+2)=-9w-40 | | y2=−18 | | s+26=-18 | | 2x+2+3x=10x+5 | | 9x-20=-20+9x | | 125+2x=180 | | 3x-2+2x+1+x+13=62 | | (-15)x=0 | | 91.8/122.4=10.2/y |