If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7b(5b+5)=0
We multiply parentheses
35b^2+35b=0
a = 35; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·35·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*35}=\frac{-70}{70} =-1 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*35}=\frac{0}{70} =0 $
| 3(4+5m)=0 | | 7(9m+2)=0 | | -5(2r+6)=0 | | 4d-2d=32 | | x+2(2x+5)=-5 | | 5x+3(x-3)=1 | | x-10x6=42 | | H=-16t^2+85t+5 | | Q=4x+26 | | 2(7x+3)=90 | | 12*3.5=x | | 3x+10=57 | | 21-r=87-2r | | 3g+7=7g-13 | | (1/8)^(2x+1)=64 | | Y=2x(0.2) | | 8x+11+2x-1=90 | | 10=0.5/x | | 4x+11/2=x-6 | | 3(X+1)=6+2(m-2) | | z^2-24z+49=0 | | 2x(70-60)=350 | | 3p-1=p+7 | | 3p-1=p-3p | | 2x-(250/x^2)=0 | | X^2+1+2x^2+2x^2+1=50 | | X^2+1+(2x)^2+(2x)^2+1=50 | | 440=55x | | (-3x^2)-11x=0 | | -x+20+-10x=70-6x | | -5x+3=14 | | 18x-19=91 |