If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7a+5a(a+3)=8a+4(a+2)
We move all terms to the left:
7a+5a(a+3)-(8a+4(a+2))=0
We multiply parentheses
5a^2+7a+15a-(8a+4(a+2))=0
We calculate terms in parentheses: -(8a+4(a+2)), so:We add all the numbers together, and all the variables
8a+4(a+2)
We multiply parentheses
8a+4a+8
We add all the numbers together, and all the variables
12a+8
Back to the equation:
-(12a+8)
5a^2+22a-(12a+8)=0
We get rid of parentheses
5a^2+22a-12a-8=0
We add all the numbers together, and all the variables
5a^2+10a-8=0
a = 5; b = 10; c = -8;
Δ = b2-4ac
Δ = 102-4·5·(-8)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{65}}{2*5}=\frac{-10-2\sqrt{65}}{10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{65}}{2*5}=\frac{-10+2\sqrt{65}}{10} $
| 2(x−5)+2=2x−8 | | 3x2-5x+11=0 | | 21=9+3a | | 2x+(2x–10)=10-(5x–16) | | y–(–7)=–12 | | x/45=-64 | | 2x2-3x+4=-(x-1)2-6 | | x-x/2+x/3=1 | | 9x-15+2x+28=48 | | -2y3=250 | | 7*x-45=-38 | | 4x5=-128 | | x^2+(3x-25/4)^2=25 | | x/2-13=14 | | 4x+20=480 | | 〖49〗^x=343 | | 4x-3(-1.5x-2)=28 | | 5b=5b-4b | | 4a+9=5a= | | -3x-2=-5x+10 | | 695.10=((x*0.21)-(x*0.19))+x | | 12–2(x+1)=4 | | 695.10=((x*0.21)+(x*0.19))+x | | 5r+15=2r+12 | | x2+16x+6=0 | | 695.10=x*0.21-x*0.19+x | | (3x+15)/11=3 | | 7(3w−5=) | | 10x²+5x+30=0 | | 4n-3+n=2 | | 2x2-2x-5=0 | | sX6-16=104 |