7a+(3a-4)(6-2a)=-6a+33a-24

Simple and best practice solution for 7a+(3a-4)(6-2a)=-6a+33a-24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7a+(3a-4)(6-2a)=-6a+33a-24 equation:



7a+(3a-4)(6-2a)=-6a+33a-24
We move all terms to the left:
7a+(3a-4)(6-2a)-(-6a+33a-24)=0
We add all the numbers together, and all the variables
7a+(3a-4)(-2a+6)-(27a-24)=0
We get rid of parentheses
7a+(3a-4)(-2a+6)-27a+24=0
We multiply parentheses ..
(-6a^2+18a+8a-24)+7a-27a+24=0
We add all the numbers together, and all the variables
(-6a^2+18a+8a-24)-20a+24=0
We get rid of parentheses
-6a^2+18a+8a-20a-24+24=0
We add all the numbers together, and all the variables
-6a^2+6a=0
a = -6; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·(-6)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*-6}=\frac{-12}{-12} =1 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*-6}=\frac{0}{-12} =0 $

See similar equations:

| 10x=4.0 | | D=3e2+4e | | 3x+8/9×+4=3/8 | | 3w+14=5 | | 15c−13c−2c+5c=10 | | 3x-8=10x+N | | 2x/3-3x/2=1/6 | | X*x+2x+2=65 | | 2x+4-7x=44 | | -4(x-8)=24 | | 13=1/2x+5 | | 2,x​ x=16x=16 | | x−12,x=20 | | 3x+5/2=x/2-6 | | x−12x=20 | | 2(2x+1)-1=1-2(1+2x) | | 4x*x-7=x*x | | 52g+13=3 | | 52g+13​ =3 | | 4x*6-x=x*x | | 40+5b=10 | | 38-x=39 | | 25/100x*25/100=25 | | 5+5+2x=17 | | 7x+8=3x-52 | | (15-x)(20+x)=(30-x)(5+x) | | X(x-7)/2=30 | | 4/5z-1=6 | | 3(x-2)+4(2x+1)=86 | | 16t^2-24t+8=0 | | -3x+5x+12=-4x+24 | | 2x+4x+6x+24=4x+8x+34 |

Equations solver categories