77=(7x+1)(10x-9)

Simple and best practice solution for 77=(7x+1)(10x-9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 77=(7x+1)(10x-9) equation:



77=(7x+1)(10x-9)
We move all terms to the left:
77-((7x+1)(10x-9))=0
We multiply parentheses ..
-((+70x^2-63x+10x-9))+77=0
We calculate terms in parentheses: -((+70x^2-63x+10x-9)), so:
(+70x^2-63x+10x-9)
We get rid of parentheses
70x^2-63x+10x-9
We add all the numbers together, and all the variables
70x^2-53x-9
Back to the equation:
-(70x^2-53x-9)
We get rid of parentheses
-70x^2+53x+9+77=0
We add all the numbers together, and all the variables
-70x^2+53x+86=0
a = -70; b = 53; c = +86;
Δ = b2-4ac
Δ = 532-4·(-70)·86
Δ = 26889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(53)-\sqrt{26889}}{2*-70}=\frac{-53-\sqrt{26889}}{-140} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(53)+\sqrt{26889}}{2*-70}=\frac{-53+\sqrt{26889}}{-140} $

See similar equations:

| w+(33/8)=15/6 | | 100+10x=300+15x | | -5=6m+11-2m | | 55=2/x | | -3+12x=12x-3* | | 1/2+g=9/8 | | 22=5(x+2)-2x | | (8x−7)+(x+7)+(2x+15)=180 | | 20=13a-3(6a-7)-1 | | 23x+125=180 | | 77=(7x+1)(10x-9 | | -2x+10x=8x | | |6n+3|=33 | | 2||x-3|-5=7 | | 10x+11=143 | | 180=18x+9+19x+2 | | x^-1/4=2 | | 3.n+4=15 | | -6(5a-7)+5(6a+7)=6 | | (5z-3)+(18z+3)+161=180 | | 19=3n—1 | | 15=t2+4 | | 7x-1=2x+÷ | | 26g=494 | | 2(4d+7)=30 | | 3x-12+30=180 | | -0.55x+0.25x=6.9 | | 37-13=4(x-2) | | -7(1+2n)=35-7n | | 1+2|2x-3|=3 | | 180=12x-6+11x+2 | | 3-3(x-4)=4-4(x+6) |

Equations solver categories