15=t2+4

Simple and best practice solution for 15=t2+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15=t2+4 equation:



15=t2+4
We move all terms to the left:
15-(t2+4)=0
We add all the numbers together, and all the variables
-(+t^2+4)+15=0
We get rid of parentheses
-t^2-4+15=0
We add all the numbers together, and all the variables
-1t^2+11=0
a = -1; b = 0; c = +11;
Δ = b2-4ac
Δ = 02-4·(-1)·11
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{11}}{2*-1}=\frac{0-2\sqrt{11}}{-2} =-\frac{2\sqrt{11}}{-2} =-\frac{\sqrt{11}}{-1} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{11}}{2*-1}=\frac{0+2\sqrt{11}}{-2} =\frac{2\sqrt{11}}{-2} =\frac{\sqrt{11}}{-1} $

See similar equations:

| 7x-1=2x+÷ | | 26g=494 | | 2(4d+7)=30 | | 3x-12+30=180 | | -0.55x+0.25x=6.9 | | 37-13=4(x-2) | | -7(1+2n)=35-7n | | 1+2|2x-3|=3 | | 180=12x-6+11x+2 | | 3-3(x-4)=4-4(x+6) | | 5x+4+6x-6=75 | | 5x^2+10x-9=3x | | 7+3-12x=3x=3x+1 | | 6a-4+4a=-14 | | 7x=7/24 | | 13x+4=-19+20 | | d8.4=10.2 | | (2x+10)+(3x−9)+(6x−19)=180 | | 6.8g+8=3.8g+14 | | 7y+4y+116=180 | | 6(3x-4)=3/7(46x+8) | | (6n-10)=59 | | 7(-4+d)=14 | | 4x-10+9=11 | | (3x+17)+(10x−5)+(3x+2)=180 | | 5(b+39)=80 | | 9x-89=x+7 | | |3x-5|=19 | | -3(2s-3)-9=-3(9s+5)-5 | | 10+n/6=8 | | 3-2x5=1.5x | | 116+4y+(7y+6)=180 |

Equations solver categories