If it's not what You are looking for type in the equation solver your own equation and let us solve it.
75x^2-766x+80=0
a = 75; b = -766; c = +80;
Δ = b2-4ac
Δ = -7662-4·75·80
Δ = 562756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{562756}=\sqrt{4*140689}=\sqrt{4}*\sqrt{140689}=2\sqrt{140689}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-766)-2\sqrt{140689}}{2*75}=\frac{766-2\sqrt{140689}}{150} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-766)+2\sqrt{140689}}{2*75}=\frac{766+2\sqrt{140689}}{150} $
| 3/5(a+5.25)=7.35 | | X2-21x+20=0 | | 3x-5x=25-11 | | 19=r/3+11 | | 16+4s=32 | | m/5+12=13 | | 20=4g-12 | | y-4=2y-10=3y-16 | | 3(4-7w)-6=-8w-9-13w | | y-3=2y-8=3y-13 | | 2+X+2x+5=40 | | -13x+3x=39+25x | | 7(v+5)-3v=3 | | n^2+n-2*820=0 | | ((x-4)/3)=-1/6 | | x^2+32x+116=0 | | F=P(1+15r) | | 3-2y=11+y | | 5x+3(x-4)=8 | | 1/5(x-7)=1+3x | | 4x-7+5x=3x-11 | | X+1/18=5/9+x-4/6 | | 43/8-15/4p=1/3p+10/3 | | 5+4(3-x)=17 | | 25X^2+4x-19=0 | | 43/8-115/4p=1/3p | | 25X^2-4x-19=0 | | 2x=5=-44-5x | | -4/3n-1=-31/9 | | 5(-7-7x)=-105 | | 8-6(9+4z)z=5 | | (x5=8x4-7x2-56x+6)/(x=8)= |