7/8x-32=3/4x+32

Simple and best practice solution for 7/8x-32=3/4x+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/8x-32=3/4x+32 equation:



7/8x-32=3/4x+32
We move all terms to the left:
7/8x-32-(3/4x+32)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 4x+32)!=0
x∈R
We get rid of parentheses
7/8x-3/4x-32-32=0
We calculate fractions
28x/32x^2+(-24x)/32x^2-32-32=0
We add all the numbers together, and all the variables
28x/32x^2+(-24x)/32x^2-64=0
We multiply all the terms by the denominator
28x+(-24x)-64*32x^2=0
Wy multiply elements
-2048x^2+28x+(-24x)=0
We get rid of parentheses
-2048x^2+28x-24x=0
We add all the numbers together, and all the variables
-2048x^2+4x=0
a = -2048; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-2048)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-2048}=\frac{-8}{-4096} =1/512 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-2048}=\frac{0}{-4096} =0 $

See similar equations:

| 6n-1=35 | | 16n3+4600-n3=4615 | | 2y+5=3× | | 10x+37=14x+1 | | 2(5+m)=3(10-m) | | -2/3d+2=11 | | 2x-6+7×+4=180 | | 10y2-17y+12=y+16 | | x=10+12/13 | | 2x^2+9x−56=0 | | -6=a/4-2 | | 180-(5x-15+61)=8x-8 | | 5×+5=2y+5 | | 27+2n=100+7 | | 7x^2+28x+35=0 | | -6t+10=-10-4t | | 3n2+19=382 | | 3/4x=1/3/4 | | 0=x^2+8x+3x+24-234 | | 2x^2−13x+21=0 | | -10(10x+7)=-70 | | 2p=7(9p+8) | | -10|10x+7|=-70 | | 234=x^2+8x+3x+24 | | -x-5=-3x-3 | | -3(a+3)=-6 | | 5x-35=12x+70 | | x(x-4)=4x+3x+6 | | 32+c=1 | | 9=6+g/2 | | 4x+3/9=3x+5/7 | | 1/5y+5=19−1/20y |

Equations solver categories