7/5u-1/5=-2/3u-1

Simple and best practice solution for 7/5u-1/5=-2/3u-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/5u-1/5=-2/3u-1 equation:



7/5u-1/5=-2/3u-1
We move all terms to the left:
7/5u-1/5-(-2/3u-1)=0
Domain of the equation: 5u!=0
u!=0/5
u!=0
u∈R
Domain of the equation: 3u-1)!=0
u∈R
We get rid of parentheses
7/5u+2/3u+1-1/5=0
We calculate fractions
21u/375u^2+250u/375u^2+(-3u)/375u^2+1=0
We multiply all the terms by the denominator
21u+250u+(-3u)+1*375u^2=0
We add all the numbers together, and all the variables
271u+(-3u)+1*375u^2=0
Wy multiply elements
375u^2+271u+(-3u)=0
We get rid of parentheses
375u^2+271u-3u=0
We add all the numbers together, and all the variables
375u^2+268u=0
a = 375; b = 268; c = 0;
Δ = b2-4ac
Δ = 2682-4·375·0
Δ = 71824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{71824}=268$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(268)-268}{2*375}=\frac{-536}{750} =-268/375 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(268)+268}{2*375}=\frac{0}{750} =0 $

See similar equations:

| 27.0739=x+1 | | 9×m=9 | | -3x-7+x=6×+20-5x | | 17=t+3t+(t+2) | | -2(8+3x)=5(-3-x) | | 6x+2=2××6 | | 9=9×m | | 5k+1/4(8k-12)+4=15 | | 8(7-p)-8=16(p-12) | | 23-x÷.25=-3 | | 5c-15=2c+15 | | 4-3y=3+ | | -3/5b+7+7/5b=19 | | 4w-3(2w-3)+7=30 | | 5=x+4*3-3÷3-1 | | x+x(2x-1)=31 | | W/2-6=w/3+10 | | h^2+6h=600 | | h^2+6h-600=0 | | x+4⋅3-3÷3-1=5 | | x=8=21 | | -39s-2=-80 | | -3x+27=2 | | 6(x-4)/3=2(x+5)/10 | | 0=x^2+2x-18 | | 2b5+3b4=3 | | 10-5+3w+2w=0 | | -7+9k=74 | | 7y=42y+45 | | 4x-2(1+3x)=5-3(x+8) | | 6X+50(10x+65)=180 | | 2x-10-7x=-20 |

Equations solver categories