If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x+x(2x-1)=31
We move all terms to the left:
x+x(2x-1)-(31)=0
We multiply parentheses
2x^2+x-1x-31=0
We add all the numbers together, and all the variables
2x^2-31=0
a = 2; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·2·(-31)
Δ = 248
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{248}=\sqrt{4*62}=\sqrt{4}*\sqrt{62}=2\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{62}}{2*2}=\frac{0-2\sqrt{62}}{4} =-\frac{2\sqrt{62}}{4} =-\frac{\sqrt{62}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{62}}{2*2}=\frac{0+2\sqrt{62}}{4} =\frac{2\sqrt{62}}{4} =\frac{\sqrt{62}}{2} $
| W/2-6=w/3+10 | | h^2+6h=600 | | h^2+6h-600=0 | | x+4⋅3-3÷3-1=5 | | x=8=21 | | -39s-2=-80 | | -3x+27=2 | | 6(x-4)/3=2(x+5)/10 | | 0=x^2+2x-18 | | 2b5+3b4=3 | | 10-5+3w+2w=0 | | -7+9k=74 | | 7y=42y+45 | | 4x-2(1+3x)=5-3(x+8) | | 6X+50(10x+65)=180 | | 2x-10-7x=-20 | | 10a^2-11a=-3 | | -60=12-9h | | 1.67/1=x/110.3 | | 16+22/5=n | | 〖(5x-3)〗^2-11(4x+1)=1 | | 2(-5x+3)=-19x+4 | | 20=7v+9v | | 10x+5=20x+12 | | 7n+7(6n+8=-138 | | 3-2c+4c+6=9 | | r/r+1=9 | | y/8+33=-15 | | 3(-3x+4)+3x=7x | | 2(x+2)^2+13=41 | | 3(-7x-2)=-6x | | -5q+-10=10 |