7/3x+15=7/15x+3

Simple and best practice solution for 7/3x+15=7/15x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3x+15=7/15x+3 equation:



7/3x+15=7/15x+3
We move all terms to the left:
7/3x+15-(7/15x+3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 15x+3)!=0
x∈R
We get rid of parentheses
7/3x-7/15x-3+15=0
We calculate fractions
105x/45x^2+(-21x)/45x^2-3+15=0
We add all the numbers together, and all the variables
105x/45x^2+(-21x)/45x^2+12=0
We multiply all the terms by the denominator
105x+(-21x)+12*45x^2=0
Wy multiply elements
540x^2+105x+(-21x)=0
We get rid of parentheses
540x^2+105x-21x=0
We add all the numbers together, and all the variables
540x^2+84x=0
a = 540; b = 84; c = 0;
Δ = b2-4ac
Δ = 842-4·540·0
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{7056}=84$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-84}{2*540}=\frac{-168}{1080} =-7/45 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+84}{2*540}=\frac{0}{1080} =0 $

See similar equations:

| 2a-5=3a+5 | | 0=-0.2x+2 | | 2(2x+3)=-(3x-5)+4x | | 2x^2+43x-399=0 | | 3s^2+7s+15=0 | | 7x-4=17,x=3 | | 2.20/31=x/2.20 | | 40x-3x=25 | | 34/2.25=x/x | | X^2-36=6x+4 | | 57+2x=58 | | 15……(x-1)=30 | | 13.5/2^(3.5)=x | | 54/2^(3.5)=x | | 0.22x=196400000 | | 3x6-18=0 | | -3(5-b)+7=-17 | | 5+2(2a+3)=39 | | 11x2+-8x+8=0 | | X+3÷4-x-10÷6=X+1÷12+1 | | 1m+4-3m=10 | | 2^2x=17.5 | | .x+1=1 | | 3w-4=20 | | 3t-54=24-36t | | 6(3x-5)=6(4x-3) | | 5a+4-3a=6a | | 4a^2+3a-430=0 | | 2x^2+5x-25=75 | | 11x+23=7x-9 | | 28-x=4x-12 | | 4x-7x-36=0 |

Equations solver categories