7/3u-5/3=5/2u+5

Simple and best practice solution for 7/3u-5/3=5/2u+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3u-5/3=5/2u+5 equation:



7/3u-5/3=5/2u+5
We move all terms to the left:
7/3u-5/3-(5/2u+5)=0
Domain of the equation: 3u!=0
u!=0/3
u!=0
u∈R
Domain of the equation: 2u+5)!=0
u∈R
We get rid of parentheses
7/3u-5/2u-5-5/3=0
We calculate fractions
14u/54u^2+(-135u)/54u^2+(-10u)/54u^2-5=0
We multiply all the terms by the denominator
14u+(-135u)+(-10u)-5*54u^2=0
Wy multiply elements
-270u^2+14u+(-135u)+(-10u)=0
We get rid of parentheses
-270u^2+14u-135u-10u=0
We add all the numbers together, and all the variables
-270u^2-131u=0
a = -270; b = -131; c = 0;
Δ = b2-4ac
Δ = -1312-4·(-270)·0
Δ = 17161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{17161}=131$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-131)-131}{2*-270}=\frac{0}{-540} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-131)+131}{2*-270}=\frac{262}{-540} =-131/270 $

See similar equations:

| 3x+6=9+x | | 2^(x^2)/2^x=64 | | F(x)=2x^2-2x+6 | | -4x+8-7(x-1)=-(3x-4)-7x+7 | | 16/21*100-30*0.05=x | | 2q–3=1 | | 10y^2-1y-2=0 | | x(150-x)=2400 | | 16/21*100-30x0.05=x | | 0=16t^2+34t+148 | | 34z/25=4/25 | | 2x-8=4x-28 | | b/4+1/9=11 | | b/4=1/9=11 | | (7/2a)-(5/4)=(1/a) | | x2–25=0 | | 5(2x-3)=7(x+1) | | 6y-2=3y-3 | | -7/10=3/4x-13/20 | | 20+2x=-4-6x | | 6X-4(3-x)=17 | | 1/2(x-5)-5/3(4x-5)=5/6 | | 2(2x+)=-3(5x-5) | | m-42=-73 | | 6/7=y/21 | | (2.31+1.405)+(1.66+2.375)=x | | 24x​+2x−x^2=0 | | 11x-12=60 | | (1/2+3/4)-2=x | | (1/2+3/4)+2=x | | 15e+30-13e=36 | | -1=1-3v |

Equations solver categories