7/2x+5=4/x-3

Simple and best practice solution for 7/2x+5=4/x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/2x+5=4/x-3 equation:



7/2x+5=4/x-3
We move all terms to the left:
7/2x+5-(4/x-3)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x-3)!=0
x∈R
We get rid of parentheses
7/2x-4/x+3+5=0
We calculate fractions
7x/2x^2+(-8x)/2x^2+3+5=0
We add all the numbers together, and all the variables
7x/2x^2+(-8x)/2x^2+8=0
We multiply all the terms by the denominator
7x+(-8x)+8*2x^2=0
Wy multiply elements
16x^2+7x+(-8x)=0
We get rid of parentheses
16x^2+7x-8x=0
We add all the numbers together, and all the variables
16x^2-1x=0
a = 16; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·16·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*16}=\frac{0}{32} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*16}=\frac{2}{32} =1/16 $

See similar equations:

| -2+8-2x=-12 | | (1/3)x+(1/2)=5(6x+4)/6 | | (1/3)x+1/2=5(6x+4)/6 | | (1/3)x-8=7 | | 4(2x+1)=4(x-3) | | 1/3x+1/2=5(6x+4)/6 | | 1/3x+1/2=(5(6x+4))/6 | | -76=-5x-x-4 | | 16-10x-12=8x-10 | | 3x-2+x=34 | | (5x-8)+(7x-12)=10x-2 | | 3/5(15d+20)-1/6(18d+12)=38 | | 330=10(20x+13) | | 3x-3+5x=85 | | 11y=8y+24 | | 10-3x-6=8 | | 5t+8=4t-6 | | 3m/4-m/12=2/8 | | 27-5u=4u | | )3/4)x=12 | | 0.15xX=1 | | 6(x-2)=4x-4 | | 6=-2+|6-1/4b| | | 1+5(2x-4)=4x+3-(6x+3-4x) | | 7x+2-3x=16=-23 | | 9x-4+20=40 | | 4y-16=2y+4+y | | 7+41(2x+15)=-13 | | 1/5(4x-64)=4x | | (x-3)/5-(x+1)/10=-1/10 | | X/2+3/8+9=x | | -9=(g/7) |

Equations solver categories