If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/(7+b)+5=2/b-5
We move all terms to the left:
7/(7+b)+5-(2/b-5)=0
Domain of the equation: (7+b)!=0
We move all terms containing b to the left, all other terms to the right
b!=-7
b∈R
Domain of the equation: b-5)!=0We add all the numbers together, and all the variables
b∈R
7/(b+7)-(2/b-5)+5=0
We get rid of parentheses
7/(b+7)-2/b+5+5=0
We calculate fractions
7b/(b^2+7b)+(-2b-14)/(b^2+7b)+5+5=0
We add all the numbers together, and all the variables
7b/(b^2+7b)+(-2b-14)/(b^2+7b)+10=0
We multiply all the terms by the denominator
7b+(-2b-14)+10*(b^2+7b)=0
We multiply parentheses
10b^2+7b+(-2b-14)+70b=0
We get rid of parentheses
10b^2+7b-2b+70b-14=0
We add all the numbers together, and all the variables
10b^2+75b-14=0
a = 10; b = 75; c = -14;
Δ = b2-4ac
Δ = 752-4·10·(-14)
Δ = 6185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-\sqrt{6185}}{2*10}=\frac{-75-\sqrt{6185}}{20} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+\sqrt{6185}}{2*10}=\frac{-75+\sqrt{6185}}{20} $
| 4(-8+m)=-60 | | -1=-10-(-10-x) | | 11v+7=(7v+1) | | (2/3)x+7=17 | | 7/7b+5=2/b-5 | | -3k-371=-5(8k+6)+-8 | | 5m-7+29=-6m | | -5/2y+7/4=-7/3y-6 | | 5w=-8 | | 7j+18=95 | | 7x-2=1.42 | | 9=u/4-16 | | 54+4y-23=14y-11-3y | | 2u+14=38 | | 2(x+6)-4x=24 | | 1/3x+1/5=-3(4/5x+1) | | 3q-41=25 | | 2⋅3x=−3.1x+63 | | 4(-3x+4)=-2(6x-8 | | 79+x=9x-4 | | 12=6+3d | | 6(s+2)-5s=16+2-4 | | p/2=(p+7)/10 | | 3z-6=-3 | | j/2+12=16 | | 1-12=-20-9x | | 9(x+3)=-5x-29 | | 18x-21=17 | | −56+7a=6363 | | -(n-5)=3(n+2) | | -88+-77=11r | | 4x-x/2-3=-53 |