If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5/2y+7/4=-7/3y-6
We move all terms to the left:
-5/2y+7/4-(-7/3y-6)=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
Domain of the equation: 3y-6)!=0We get rid of parentheses
y∈R
-5/2y+7/3y+6+7/4=0
We calculate fractions
126y^2/96y^2+(-240y)/96y^2+224y/96y^2+6=0
We multiply all the terms by the denominator
126y^2+(-240y)+224y+6*96y^2=0
We add all the numbers together, and all the variables
126y^2+224y+(-240y)+6*96y^2=0
Wy multiply elements
126y^2+576y^2+224y+(-240y)=0
We get rid of parentheses
126y^2+576y^2+224y-240y=0
We add all the numbers together, and all the variables
702y^2-16y=0
a = 702; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·702·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*702}=\frac{0}{1404} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*702}=\frac{32}{1404} =8/351 $
| 5w=-8 | | 7j+18=95 | | 7x-2=1.42 | | 9=u/4-16 | | 54+4y-23=14y-11-3y | | 2u+14=38 | | 2(x+6)-4x=24 | | 1/3x+1/5=-3(4/5x+1) | | 3q-41=25 | | 2⋅3x=−3.1x+63 | | 4(-3x+4)=-2(6x-8 | | 79+x=9x-4 | | 12=6+3d | | 6(s+2)-5s=16+2-4 | | p/2=(p+7)/10 | | 3z-6=-3 | | j/2+12=16 | | 1-12=-20-9x | | 9(x+3)=-5x-29 | | 18x-21=17 | | −56+7a=6363 | | -(n-5)=3(n+2) | | -88+-77=11r | | 4x-x/2-3=-53 | | 6=15-3q | | p/2=p+7/10 | | 1=13-2c | | 36=60-12x | | 19=3+2x | | 3(2x-4)=5x(7) | | 4p-10=6p | | 5(x-2)=-1+10x+21 |