7/(4x-3)=2/x+2

Simple and best practice solution for 7/(4x-3)=2/x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/(4x-3)=2/x+2 equation:



7/(4x-3)=2/x+2
We move all terms to the left:
7/(4x-3)-(2/x+2)=0
Domain of the equation: (4x-3)!=0
We move all terms containing x to the left, all other terms to the right
4x!=3
x!=3/4
x!=3/4
x∈R
Domain of the equation: x+2)!=0
x∈R
We get rid of parentheses
7/(4x-3)-2/x-2=0
We calculate fractions
7x/(4x^2-3x)+(-8x+6)/(4x^2-3x)-2=0
We multiply all the terms by the denominator
7x+(-8x+6)-2*(4x^2-3x)=0
We multiply parentheses
-8x^2+7x+(-8x+6)+6x=0
We get rid of parentheses
-8x^2+7x-8x+6x+6=0
We add all the numbers together, and all the variables
-8x^2+5x+6=0
a = -8; b = 5; c = +6;
Δ = b2-4ac
Δ = 52-4·(-8)·6
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{217}}{2*-8}=\frac{-5-\sqrt{217}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{217}}{2*-8}=\frac{-5+\sqrt{217}}{-16} $

See similar equations:

| X/(x+7)=5/4 | | 5(4x-7)(3x-1)2=-5 | | 21/x=9/15 | | 6.8=b7 | | x7x=1 | | 3x8−4x3=4 | | 3/1=236/k | | 5(3^x)=45 | | 3/1=k/236 | | 3x/8−4x/3=4 | | 1/3=k/236 | | x(2x-4)=(2x+4)(x-8) | | x-3/4=4x+1/8 | | -8-4(8n+3)=-276 | | (x+8)(x+1)=x*x+4x+4 | | 420s=1/4 | | -3x+57=87 | | 100m=2/3 | | (x*x*x*x)+6x-44=0 | | -8-4(4n+3)=-276 | | (X^4)+6x-44=0 | | 7/15t=140 | | 18z+(40z+5)+10z+z=360 | | 4y+1=24 | | -8-4(8n+)=-276 | | y-3=4/3(×-9) | | (X+9)(x-5)=(x^2)+1 | | x-2(2x-9)=2-3x | | 4(x-1)-3(x-2)=-8 | | 5=1+x/16 | | X^2+4x-45=x^2+1 | | 84=-4(4p-3)+4p |

Equations solver categories