If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7-k2=-49
We move all terms to the left:
7-k2-(-49)=0
We add all the numbers together, and all the variables
-1k^2+56=0
a = -1; b = 0; c = +56;
Δ = b2-4ac
Δ = 02-4·(-1)·56
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*-1}=\frac{0-4\sqrt{14}}{-2} =-\frac{4\sqrt{14}}{-2} =-\frac{2\sqrt{14}}{-1} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*-1}=\frac{0+4\sqrt{14}}{-2} =\frac{4\sqrt{14}}{-2} =\frac{2\sqrt{14}}{-1} $
| f+1=25 | | 9.65x+43=8.4x+58 | | 8-62m=-52 | | 6y+1=3(14)-5 | | ((x+5)2)-6)/2=8 | | 7/x-6=3/x-2 | | 102w=80 | | x+5/2-6/2=8 | | g+14/2=1 | | 2(f-12)2=2,490 | | 37y+54=132 | | 3(14)-5=6y+1 | | 8=2(k+1) | | 11=4-u | | 717=9f+f2 | | -2(-1-6m)+3m=92 | | 3(4x−3)=−4x+7 | | 7=8m-12 | | -3(w-10)=3 | | 299=(-7+2q)2 | | (m+12)2=468 | | 2x+7+3x=10+x+5 | | 17=-5-5p | | 1.6÷x=0.64 | | 2b-3-2b=9+2b | | 3(-+f)2=412 | | 10÷x=4 | | -5j=-9j-7 | | 4(b-1)-5(b+1)=100 | | 3x-9=-5x | | 2/5+2=3/8+h/(1/3) | | 8k^2+49k-49=0 |