7,5*10^5=(9*10^9*(3.6*10^-6))/(x^2-0,0625)

Simple and best practice solution for 7,5*10^5=(9*10^9*(3.6*10^-6))/(x^2-0,0625) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7,5*10^5=(9*10^9*(3.6*10^-6))/(x^2-0,0625) equation:



7.5*10^5=(9*10^9(3.6*10^-6))/(x^2-0.0625)
We move all terms to the left:
7.5*10^5-((9*10^9(3.6*10^-6))/(x^2-0.0625))=0
Domain of the equation: (x^2-0.0625))!=0
x∈R
We add all the numbers together, and all the variables
-((9*10^9(3.6*10^-6))/(x^2-0.0625))+750000=0
We multiply all the terms by the denominator
-((9*10^9(3.6*10^-6))+750000*(x^2-0.0625))=0
We calculate terms in parentheses: -((9*10^9(3.6*10^-6))+750000*(x^2-0.0625)), so:
(9*10^9(3.6*10^-6))+750000*(x^2-0.0625)
determiningTheFunctionDomain 750000*(x^2-0.0625)+(9*10^9(3.6*10^-6))
We add all the numbers together, and all the variables
750000*(x^2-0.0625)+32400
We multiply parentheses
750000x^2-46875+32400
We add all the numbers together, and all the variables
750000x^2-14475
Back to the equation:
-(750000x^2-14475)
We get rid of parentheses
-750000x^2+14475=0
a = -750000; b = 0; c = +14475;
Δ = b2-4ac
Δ = 02-4·(-750000)·14475
Δ = 43425000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{43425000000}=\sqrt{225000000*193}=\sqrt{225000000}*\sqrt{193}=15000\sqrt{193}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-15000\sqrt{193}}{2*-750000}=\frac{0-15000\sqrt{193}}{-1500000} =-\frac{15000\sqrt{193}}{-1500000} =-\frac{\sqrt{193}}{-100} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+15000\sqrt{193}}{2*-750000}=\frac{0+15000\sqrt{193}}{-1500000} =\frac{15000\sqrt{193}}{-1500000} =\frac{\sqrt{193}}{-100} $

See similar equations:

| X+5(x-1)=5(2-x) | | 153*5+x=800 | | 6d(d-3)=25 | | 5x+0.2x=800 | | X^3+7x-9=0 | | (D²+5D+4)(2D²+5D+2)y=0 | | (D5+5D+4)(2D2+5D+2)y=0 | | (0.125)^x=√0.5 | | 24x+157=-2x | | 24x+157=-2 | | ((x-5)÷3)-(x-6)=3(x+7)-3 | | 3x+4x=9-12 | | 1(3.8r-8.2)=50.6 | | x/42x+5=64 | | 3x2+0.5=7.5x | | 2n+8=14,n+4 | | 8x+7=12-4x | | 5x(6x-9)=5x | | 2x+3-10=192-18x | | 5(2‐3x)‐17(2x‐5)=20 | | 5x/3-(x-6)=3(x+7)-3 | | 2^x+3^x=97 | | x2+35x+150=0 | | 5x+3x5x-2=140 | | 18.^(h+2)/55=78/6 | | 8x-12=5x+9= | | 13x+146=14x+66 | | 8x-12=5+9 | | 12x+145=13x+65 | | -624-2k=6k+8(3+8k) | | -4n-8=4(-3n+2$ | | 66+6=-6k-2k |

Equations solver categories