If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(y2)=42
We move all terms to the left:
7(y2)-(42)=0
We add all the numbers together, and all the variables
7y^2-42=0
a = 7; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·7·(-42)
Δ = 1176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1176}=\sqrt{196*6}=\sqrt{196}*\sqrt{6}=14\sqrt{6}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{6}}{2*7}=\frac{0-14\sqrt{6}}{14} =-\frac{14\sqrt{6}}{14} =-\sqrt{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{6}}{2*7}=\frac{0+14\sqrt{6}}{14} =\frac{14\sqrt{6}}{14} =\sqrt{6} $
| 8t+14=118 | | 7=y2=42 | | 4x+12=-23-3 | | 4(3x5)=2 | | 15c-95=10 | | 21x+19=28x+12 | | 12v-40=44 | | w/3=w/4+2 | | 6v=30+v | | 0.5y /4 9=y+3/8 | | 2w-9=103 | | -14+3x=-14 | | -3(2x-1)=x18 | | 5(5x-x)=4(x-5) | | 4x+65=96 | | 10-7x-4-x=-5x-3 | | 2y-5.3=y+12 | | y+12=2y-5.3 | | 19+7n=-2n | | -5+4+n=-3 | | 3n-7=72 | | -(4x-5)+16=-31 | | 10x+13=41 | | 4*3^(3x+3)=23 | | K/m=2 | | 81+b2=25 | | 16/36=x/54 | | 45-x=26 | | -d+100=-3d+200 | | 1/2y-18=2 | | 15+2x=-5-3x | | -6(2v-4)+8v=4(v+9) |