7(s-1)(s+5)=s*2+4s-2

Simple and best practice solution for 7(s-1)(s+5)=s*2+4s-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(s-1)(s+5)=s*2+4s-2 equation:



7(s-1)(s+5)=s*2+4s-2
We move all terms to the left:
7(s-1)(s+5)-(s*2+4s-2)=0
We add all the numbers together, and all the variables
7(s-1)(s+5)-(4s+s*2-2)=0
We get rid of parentheses
7(s-1)(s+5)-4s-s*2+2=0
We multiply parentheses ..
7(+s^2+5s-1s-5)-4s-s*2+2=0
We multiply parentheses
7s^2+35s-7s-4s-s*2-35+2=0
Wy multiply elements
7s^2+35s-7s-4s-2s-35+2=0
We add all the numbers together, and all the variables
7s^2+22s-33=0
a = 7; b = 22; c = -33;
Δ = b2-4ac
Δ = 222-4·7·(-33)
Δ = 1408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1408}=\sqrt{64*22}=\sqrt{64}*\sqrt{22}=8\sqrt{22}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-8\sqrt{22}}{2*7}=\frac{-22-8\sqrt{22}}{14} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+8\sqrt{22}}{2*7}=\frac{-22+8\sqrt{22}}{14} $

See similar equations:

| 31=3x+2x+x | | -3/4(n+8)=6 | | x/4-5=-5 | | x^2(x^2-8)(x^2-6)-64=0 | | 6r-20=-4r | | 8y+7y=75 | | 3(1-t2)-2(1-t)+10=(1-t) | | -4|s+9|=-24 | | 7-8s=7(1+7s) | | -4r=20–6r | | 1/5(x+6)=1/6(x+8) | | 3,20+7x=6x-7,80 | | 81(0.8)+0.3x=75 | | x+10/20=3/4x | | -13x-34=36-15x | | 0=-6u | | 20u-20=19u | | |4x+5|+19=12 | | 7-2s=1-5s+2s | | 3(x-2)+3=9 | | 5x+8-x=44 | | 12z+50=164 | | 2(1.09^2x+1)=8 | | 5x+2x-3=-3x+10x+1 | | y^2+6y=-18 | | 78(0.7)+0.3x=75 | | -4=x/5+6 | | 7(k-3)=3k+13 | | 2=8(3*n) | | 15-3t=-12-5t | | 2(1.092x+1)=8 | | 4z|7+4=-3 |

Equations solver categories