If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3(1-t2)-2(1-t)+10=(1-t)
We move all terms to the left:
3(1-t2)-2(1-t)+10-((1-t))=0
We add all the numbers together, and all the variables
3(-1t^2+1)-2(-1t+1)-((-1t+1))+10=0
We multiply parentheses
-3t^2+2t-((-1t+1))+3-2+10=0
We calculate terms in parentheses: -((-1t+1)), so:We add all the numbers together, and all the variables
(-1t+1)
We get rid of parentheses
-1t+1
Back to the equation:
-(-1t+1)
-3t^2+2t-(-1t+1)+11=0
We get rid of parentheses
-3t^2+2t+1t-1+11=0
We add all the numbers together, and all the variables
-3t^2+3t+10=0
a = -3; b = 3; c = +10;
Δ = b2-4ac
Δ = 32-4·(-3)·10
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{129}}{2*-3}=\frac{-3-\sqrt{129}}{-6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{129}}{2*-3}=\frac{-3+\sqrt{129}}{-6} $
| -4|s+9|=-24 | | 7-8s=7(1+7s) | | -4r=20–6r | | 1/5(x+6)=1/6(x+8) | | 3,20+7x=6x-7,80 | | 81(0.8)+0.3x=75 | | x+10/20=3/4x | | -13x-34=36-15x | | 0=-6u | | 20u-20=19u | | |4x+5|+19=12 | | 7-2s=1-5s+2s | | 3(x-2)+3=9 | | 5x+8-x=44 | | 12z+50=164 | | 2(1.09^2x+1)=8 | | 5x+2x-3=-3x+10x+1 | | y^2+6y=-18 | | 78(0.7)+0.3x=75 | | -4=x/5+6 | | 7(k-3)=3k+13 | | 2=8(3*n) | | 15-3t=-12-5t | | 2(1.092x+1)=8 | | 4z|7+4=-3 | | 3(x-4)+6=5(x+1)-1 | | 2=8(3•n) | | -5=12-y | | -7+5x+6x=-106 | | (x^2-4)^3=0 | | x+7+3x=17 | | 4(2t-4)+3t=32+t |