7(3-2y)3y=y+4(y-4)

Simple and best practice solution for 7(3-2y)3y=y+4(y-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(3-2y)3y=y+4(y-4) equation:



7(3-2y)3y=y+4(y-4)
We move all terms to the left:
7(3-2y)3y-(y+4(y-4))=0
We add all the numbers together, and all the variables
7(-2y+3)3y-(y+4(y-4))=0
We multiply parentheses
-42y^2+63y-(y+4(y-4))=0
We calculate terms in parentheses: -(y+4(y-4)), so:
y+4(y-4)
We multiply parentheses
y+4y-16
We add all the numbers together, and all the variables
5y-16
Back to the equation:
-(5y-16)
We get rid of parentheses
-42y^2+63y-5y+16=0
We add all the numbers together, and all the variables
-42y^2+58y+16=0
a = -42; b = 58; c = +16;
Δ = b2-4ac
Δ = 582-4·(-42)·16
Δ = 6052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6052}=\sqrt{4*1513}=\sqrt{4}*\sqrt{1513}=2\sqrt{1513}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-2\sqrt{1513}}{2*-42}=\frac{-58-2\sqrt{1513}}{-84} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+2\sqrt{1513}}{2*-42}=\frac{-58+2\sqrt{1513}}{-84} $

See similar equations:

| (x-11)(x+5)+63=0 | | 2x+6x-4.5x=0 | | 1/2(x+1)-2/3(x+3)=2 | | 7z+52+z+64=180 | | 2/3(3q+6)=68 | | 50x+5+10=700 | | 4(x=3) | | 4b=b-21 | | 15x+5=115 | | 5•x+487=3777 | | -3k+(-8)=-8 | | 16=-4p | | -5p+12=20 | | 7c-12=-4 | | x^2-x+12/x+3=-7 | | 6x-(-10)=3 | | 3x+24=89 | | 2s-64=2s | | 6(x+3)/4=3x-5 | | (6x+18)/4=3x-5 | | 6x+18/4=3x-5 | | −31/5=23/10x | | 0,7x=0,78-0,3 | | 4^(3x+1)=100 | | 57p-13p+61p-p=18 | | (13)^x=66 | | 5(4w-2)=8+2(w-6)+12 | | 2(x+4)=7+5(x-4) | | 10x+6=8x+3 | | 4(k-6)=6(k=2) | | 18x-7=13x-32 | | 7/9x8=5x |

Equations solver categories