If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7^2+b^2=576
We move all terms to the left:
7^2+b^2-(576)=0
determiningTheFunctionDomain b^2-576+7^2=0
We add all the numbers together, and all the variables
b^2-527=0
a = 1; b = 0; c = -527;
Δ = b2-4ac
Δ = 02-4·1·(-527)
Δ = 2108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2108}=\sqrt{4*527}=\sqrt{4}*\sqrt{527}=2\sqrt{527}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{527}}{2*1}=\frac{0-2\sqrt{527}}{2} =-\frac{2\sqrt{527}}{2} =-\sqrt{527} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{527}}{2*1}=\frac{0+2\sqrt{527}}{2} =\frac{2\sqrt{527}}{2} =\sqrt{527} $
| 6x-15=3x+18 | | 5h-7=2(h+1 | | -5=v/2+6 | | -2(4-3+7=6(x+1) | | 5=n-13/2 | | X^2-9x+74=0 | | n/3-8=-1 | | 2(3x-7)-4=2(x-3)+20 | | 3(4-3x)=2(2x+5) | | 1/8x+15=x | | x=1/5(3x-7) | | F=9/6(k-273.15)+32 | | x=1/5(x-3+2x-4) | | 6x-3=2x-91 | | x=1/5(x-3)+(2x-4) | | 2x-4=5x-5 | | x=4=10 | | 1=-3+n/9 | | 1+1/4l=24 | | 4(x+5)-2x=18 | | 1/8x+15=3/4x | | x/2=20-2x | | 1.5-4x=-x+3 | | 1.5-4x=-x | | 4x+35+8x-9=180 | | 4-(x-3)=2(x+5) | | x^2-7x+-x+7=180 | | 32y-24=2y-15 | | 2^2-7x+-x+7=180 | | v/7+7.1=-4.1 | | x^2-8x-173=0 | | 8-(x-4)=11(x+10) |