If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y(-5y-10)=(y+11)(y+1)-y2+31
We move all terms to the left:
6y(-5y-10)-((y+11)(y+1)-y2+31)=0
We multiply parentheses
-30y^2-60y-((y+11)(y+1)-y2+31)=0
We multiply parentheses ..
-30y^2-((+y^2+y+11y+11)-y2+31)-60y=0
We calculate terms in parentheses: -((+y^2+y+11y+11)-y2+31), so:We add all the numbers together, and all the variables
(+y^2+y+11y+11)-y2+31
We add all the numbers together, and all the variables
-1y^2+(+y^2+y+11y+11)+31
We get rid of parentheses
-1y^2+y^2+y+11y+11+31
We add all the numbers together, and all the variables
12y+42
Back to the equation:
-(12y+42)
-30y^2-60y-(12y+42)=0
We get rid of parentheses
-30y^2-60y-12y-42=0
We add all the numbers together, and all the variables
-30y^2-72y-42=0
a = -30; b = -72; c = -42;
Δ = b2-4ac
Δ = -722-4·(-30)·(-42)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-12}{2*-30}=\frac{60}{-60} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+12}{2*-30}=\frac{84}{-60} =-1+2/5 $
| xx-x=x+15 | | 11a+5=(a+2)(a+1)-a+35 | | 11a+5=(a+2)(a+1)-a²+35 | | 2(y-6)+28=62-6(y+5) | | 31+5b=46 | | 6(y-11)+77=8y+9 | | x^2+13,9x+2,2=0 | | -4x-(-8x-33)=11x+5 | | 8y+22=-3y+30 | | x2+40x−3=0 | | -6a+33=-6a+3 | | -3(5-x)=35-5x | | -6a+24=4a+33 | | 126=10x+6 | | 3(3m-2)=0 | | -8y+42=9y+32 | | -9y+30=-5y+38 | | (x-2)*(x^2+2)=0 | | 8a+8=3a+20 | | (x-2)(x^2+2)=0 | | xxx-x=x-15 | | 15=(3x-3) | | -5y+40=3y+21 | | 4a+2=9a+27 | | -5y-6=-16 | | -11y+40=7y+12 | | −15x−18=5x+82. | | p-6=14-p | | -8a+3=11a+38 | | 18-5f=2f+5 | | 10a+29=-3a+2 | | 3k-8=23 |