If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2=36
We move all terms to the left:
6x^2-(36)=0
a = 6; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·6·(-36)
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*6}=\frac{0-12\sqrt{6}}{12} =-\frac{12\sqrt{6}}{12} =-\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*6}=\frac{0+12\sqrt{6}}{12} =\frac{12\sqrt{6}}{12} =\sqrt{6} $
| 5x=9-7=13 | | z²=15z | | 2x-8=-x=4 | | -6(-8+3k)=2(-6+6k) | | -240=5(-6+7x) | | –8+2b=b | | 4(m+3)=20+m | | 18x+3=132° | | c+5/10=28 | | 11.87-19.5c-5.69=-16.4c+2.15 | | -2q+(-12q)-(-20q)-(-10)=4 | | −6a−5a=11 | | -8(8x-7)+6x=520 | | 20c-5-4=15c+c | | x(22+54x=-20+60x) | | 12.6h-11.95=-7.95+12.8h | | 7y-39=-4(3-4y) | | (k+9)(k+4)=-4 | | 1/4(8x+12)=-33 | | 8(2w-2)=7(3w+2)= | | 39(x+1)=15 | | 3.1s-14.28=16.15+4.8s | | X-15=3x-33 | | 3n=5n-12=n+20 | | -14x=-12x+4-2x | | (7x-11)=R | | C²+10c+25=0 | | 1/2(6x-12)=15-4x | | 2x+3=(5x+4x)2 | | 21a=-31 | | 3x+11=x-27 | | -10y—5y+-12=18 |