If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-26x+9=0.
a = 6; b = -26; c = +9;
Δ = b2-4ac
Δ = -262-4·6·9
Δ = 460
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{460}=\sqrt{4*115}=\sqrt{4}*\sqrt{115}=2\sqrt{115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{115}}{2*6}=\frac{26-2\sqrt{115}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{115}}{2*6}=\frac{26+2\sqrt{115}}{12} $
| -9x-31/36=-13/18 | | 3x-4=7+2× | | -6(2r+8)=-10(r-3 | | 11y-6y-11=41.30 | | 13x-117=5x-13 | | 10-(-2n=8 | | 9=2a+6 | | -12=n/2 | | 4x=6-2x-2 | | y3+5y^2=0 | | -3x+9=-45 | | 4(2x-1)+3x+11=15 | | 4-2x=34+4x | | -16x-3+16=45 | | -6p-8=22 | | 36-2x=x=2 | | 3(x-36)=-2x | | 5x-3/2=3/x+8 | | 3x-36=-2x | | -17=11x-11x | | 3(2x-4)=2(3x+6) | | 9y+24=y | | 8q=63 | | -6x-15=3x+21 | | -20(x*x)+2x+3=(4x-5)+(-x+1)(20x+1)-2-19x | | 2=4/9p | | 6x=4(0.5X-8) | | x-18=1/4x | | x-18=x/(1/4) | | -2(4g-3-)=30 | | -20x*x+2x+3=(4x-5)+(-x+1)(20x+1)-2-19x | | 15+3.50x=10+2x |