If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-19x+10=0
a = 6; b = -19; c = +10;
Δ = b2-4ac
Δ = -192-4·6·10
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-11}{2*6}=\frac{8}{12} =2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+11}{2*6}=\frac{30}{12} =2+1/2 $
| 3x-56=31 | | -10-6f=-6f-10 | | 3+6j=6j | | b-95/2=2 | | -7d=-3d-4d | | -16=2+3u | | z/4+16=18 | | 2x+17=327 | | 6p-4=4p | | 2x+10=-88 | | 14=p/3+10 | | x^2+15=3x-15 | | b/4+12=16 | | 2(-3z+1)=40 | | 3x-2x-x=4-9+5 | | 4x+√7=24 | | n÷23=14 | | 2t-3=1 | | 4x+2.64=24 | | 9(p-4)=-14 | | -9y^2+15=-8y+6 | | -10x+25^x=-1 | | 12x-16=8x+12 | | 1=3c−5 | | 3g−5=4 | | 6=4+2t | | x^2-6x-9=-6x | | 3c-9=7.5+5c | | 3=2b−7 | | 3n2+21n=0 | | -10x+25^x=1 | | .05x=x-157 |