If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-14x-40=0
a = 6; b = -14; c = -40;
Δ = b2-4ac
Δ = -142-4·6·(-40)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-34}{2*6}=\frac{-20}{12} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+34}{2*6}=\frac{48}{12} =4 $
| 25+5x=50+1x | | -27+6x=3x-3 | | y−56/7=4 | | 37=3=5x=6 | | 1/3y+3=-18 | | 80+20x+7x-2=180 | | 14-6x=10x+5-13x | | 78.75+80.25x=50+95.75x | | 2x+9+2x+8+2x=2x+2x+3x+4 | | 2x²+18x+40=0 | | 52x-1+4=11 | | x-18=15/100x | | 4n+4+8n+5=33 | | 8y=-5y | | 100=15(x-3) | | 9p+12=57 | | (3x-15)+(2x+20)=90 | | 4a+5=2+3.250 | | 5|2x-1|+4=11 | | (3x-15)+(2x+20)=35 | | 8y-4=-4-(1/2y) | | 6x-9=15+11x | | 2x20=4x | | 103=3x+1+4x-3 | | 4x+3+3x+3=125 | | (4x+22)=(5x-3) | | 90=3x+1+4x-3 | | 4x+3+3x+3+125=180 | | 7=5-y | | 2x-5(1-6×)=155 | | 3r-5=13=2r | | 11-9d-2=5d+28 |