6x-4x(x-9)=2(3-x)

Simple and best practice solution for 6x-4x(x-9)=2(3-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x-4x(x-9)=2(3-x) equation:



6x-4x(x-9)=2(3-x)
We move all terms to the left:
6x-4x(x-9)-(2(3-x))=0
We add all the numbers together, and all the variables
6x-4x(x-9)-(2(-1x+3))=0
We multiply parentheses
-4x^2+6x+36x-(2(-1x+3))=0
We calculate terms in parentheses: -(2(-1x+3)), so:
2(-1x+3)
We multiply parentheses
-2x+6
Back to the equation:
-(-2x+6)
We add all the numbers together, and all the variables
-4x^2+42x-(-2x+6)=0
We get rid of parentheses
-4x^2+42x+2x-6=0
We add all the numbers together, and all the variables
-4x^2+44x-6=0
a = -4; b = 44; c = -6;
Δ = b2-4ac
Δ = 442-4·(-4)·(-6)
Δ = 1840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1840}=\sqrt{16*115}=\sqrt{16}*\sqrt{115}=4\sqrt{115}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-4\sqrt{115}}{2*-4}=\frac{-44-4\sqrt{115}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+4\sqrt{115}}{2*-4}=\frac{-44+4\sqrt{115}}{-8} $

See similar equations:

| 17f+2=6f+3 | | 49=36+v | | n+1/2=-5 | | 7x+31=5x+23 | | (5r)(-2)=-2 | | 5(h-95)=10 | | 9+12c=-15 | | m/2+3=-1 | | 9+12c=–15 | | 17f+2=6f-3 | | 12=t9 | | 20+13n=-19 | | 17f-2=6f-3 | | 19+19m=-19 | | -7+6p=-9 | | 5y-1=-16 | | B=5/4(j-63 | | (1/4x+)=1/2+10 | | 4(x+5)=4x+ | | 26=6+2(3+x) | | -3y-1=8 | | 13+12s=1 | | 1/4(8x-36)=x-6 | | -7w=11=25 | | 3(4x-6)=x- | | x/80=19/20 | | (79+x)/2=51 | | 70=(x=16) | | 19/20=x/80 | | -9(u-5)=5u+3 | | 16f+2=6f+5 | | -3x-4=37 |

Equations solver categories