If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x-3x^2=0
a = -3; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·(-3)·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*-3}=\frac{-12}{-6} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*-3}=\frac{0}{-6} =0 $
| 17x2=14 | | 25x-75=0 | | X/22=55/x | | 9+8x=−17(x−2)+11+28 | | 4x(-12)=8 | | 0=(x-6)(4x+1) | | -3/7x2=0 | | 2x/3=-x+5 | | 2/3x+1/3=1/3x+1/3 | | 6x-13=-63-4x | | 7a=2+1/a | | 2y+23=32-3y | | (x+2)^2=(x-3)(x+5) | | (x)*(2)+(50)*(4)=460 | | x*(2)+(50)*(4)=460 | | 6x+13=-63-4x | | t+3=24 | | (x+2)(2x-5)=3(x+2) | | 3(1+1x)=30 | | -6(-6x+7x)=-348 | | 2(-6x+8)=-128 | | 3(-6x+1)=93 | | x^2+13+40x=0 | | -2(7+7x)=-140 | | 6x2=x+22 | | 2(-4-2x)=32 | | 9=2n-3 | | -2(6-4x)=-92 | | 6(2+7x)=-408 | | -6x-3=6x-15 | | 2j=15 | | -4x+10=3x-60 |