6x(x-7)=(2x+1)(x-7)

Simple and best practice solution for 6x(x-7)=(2x+1)(x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6x(x-7)=(2x+1)(x-7) equation:



6x(x-7)=(2x+1)(x-7)
We move all terms to the left:
6x(x-7)-((2x+1)(x-7))=0
We multiply parentheses
6x^2-42x-((2x+1)(x-7))=0
We multiply parentheses ..
6x^2-((+2x^2-14x+x-7))-42x=0
We calculate terms in parentheses: -((+2x^2-14x+x-7)), so:
(+2x^2-14x+x-7)
We get rid of parentheses
2x^2-14x+x-7
We add all the numbers together, and all the variables
2x^2-13x-7
Back to the equation:
-(2x^2-13x-7)
We add all the numbers together, and all the variables
6x^2-42x-(2x^2-13x-7)=0
We get rid of parentheses
6x^2-2x^2-42x+13x+7=0
We add all the numbers together, and all the variables
4x^2-29x+7=0
a = 4; b = -29; c = +7;
Δ = b2-4ac
Δ = -292-4·4·7
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-27}{2*4}=\frac{2}{8} =1/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+27}{2*4}=\frac{56}{8} =7 $

See similar equations:

| 2(-3x-8)-x=12 | | 1/2v+2=1/4(2v+3) | | 1/2x+5=2/4x+1 | | X^2+9x+8x=0 | | H(x)=3x+1 | | 2x+12=-3x+7x | | 1x+(-5)=8 | | a/2-7=2 | | 9x+2=9x-2 | | 16x^2+50=1 | | 2x÷9=4 | | 3x-7=6x-22 | | 20x²-4x=ᴏ | | 9y-9=4y+11 | | 5(x+6)=-10 | | -4-4K=4K-8-7k | | 90xY=45 | | -7(2x-4)=2(x-11) | | (0.2-2x)^2=0 | | 4(15x-3)+2(5x+7)=9x+3(4+6x) | | 48-2x=39+1x | | -6(2x+3)=32 | | x^2+3x=3600 | | 5x(2+x)=0 | | 12-(x²+14x+49)=0 | | 7-8r=13-8r | | 10x-11+90=6x+25 | | X²+10=6x+50 | | 3o-2=2o+3 | | 9y-7=8+9+y | | 55-2x=3 | | 90+6x+25=10x-11 |

Equations solver categories