6s-4=892+1/4s

Simple and best practice solution for 6s-4=892+1/4s equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6s-4=892+1/4s equation:



6s-4=892+1/4s
We move all terms to the left:
6s-4-(892+1/4s)=0
Domain of the equation: 4s)!=0
s!=0/1
s!=0
s∈R
We add all the numbers together, and all the variables
6s-(1/4s+892)-4=0
We get rid of parentheses
6s-1/4s-892-4=0
We multiply all the terms by the denominator
6s*4s-892*4s-4*4s-1=0
Wy multiply elements
24s^2-3568s-16s-1=0
We add all the numbers together, and all the variables
24s^2-3584s-1=0
a = 24; b = -3584; c = -1;
Δ = b2-4ac
Δ = -35842-4·24·(-1)
Δ = 12845152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12845152}=\sqrt{16*802822}=\sqrt{16}*\sqrt{802822}=4\sqrt{802822}$
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3584)-4\sqrt{802822}}{2*24}=\frac{3584-4\sqrt{802822}}{48} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3584)+4\sqrt{802822}}{2*24}=\frac{3584+4\sqrt{802822}}{48} $

See similar equations:

| 5+4v+3v=-16 | | -4v−3v−–2=9 | | (2y+41)=(5y+48) | | -6d=-72 | | 4x+23+10x-1+78=180 | | 7a+6a-10=16 | | 6(a–6)=-30 | | –4w−10=–6w | | 54k=0 | | –4j−10=–6j | | 2(2y=7)=18 | | (x+10)+x+x+59=180 | | –10=10(d+6) | | 25/1=x/3 | | 6x-5+101=180 | | -6.3=y/5+6.2 | | 6700=2^x | | -52t+288=-44t+256 | | 10=10(d+6) | | 2(x+4)=990 | | x9−5=7 | | -22.7=-3.5+x/6 | | e-51=12 | | –3j=–10+2j | | 2z-12=3z+18 | | 44+3n-5+90=180 | | -22.7=-3.5=x/6 | | 2x+10=0.5x-2 | | 6w+4|=2w-10 | | 4(x+1)=9x | | 13x-21+8x-6+x+4=1 | | 42+x=36+12 |

Equations solver categories