If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2-13n+6=0
a = 6; b = -13; c = +6;
Δ = b2-4ac
Δ = -132-4·6·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-5}{2*6}=\frac{8}{12} =2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+5}{2*6}=\frac{18}{12} =1+1/2 $
| 2(x+1)+2+3x=4(2x+1)-3x | | 13+4y=61 | | X=(10x-5)+6/2 | | 3.25+.5x=4.75+.75x | | h/4-4=2 | | -4+x/5=6 | | 2x-7x+15=-35 | | 130=4z(3z+2) | | Añ7a=16 | | 9(n-837)=504 | | 2x+3(5x-10)=-200 | | 2(3-x)+x=2x+1 | | (1÷2)x-12=(2÷3)x-15 | | x^-7x+12=0 | | 9(n-837=504 | | 3p-3=-27 | | 0=-8/9x-16 | | 6(x-2)+3=-9 | | 20(1.05)^x=300 | | -7.3y-5.18=51.9 | | 5^2x=130 | | 3x-(4-2x)=86 | | 39-(7x)=-4(7x+7)+4 | | t-173/30=18 | | 15b=11-b | | m/7=-1/7 | | 20(1.05)^x-50=250 | | 27^3x=81 | | 87-n=65 | | 20(1.05)^x=250 | | 7z+5+3z=45 | | 4(6-5x)=7x+11 |