130=4z(3z+2)

Simple and best practice solution for 130=4z(3z+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 130=4z(3z+2) equation:



130=4z(3z+2)
We move all terms to the left:
130-(4z(3z+2))=0
We calculate terms in parentheses: -(4z(3z+2)), so:
4z(3z+2)
We multiply parentheses
12z^2+8z
Back to the equation:
-(12z^2+8z)
We get rid of parentheses
-12z^2-8z+130=0
a = -12; b = -8; c = +130;
Δ = b2-4ac
Δ = -82-4·(-12)·130
Δ = 6304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6304}=\sqrt{16*394}=\sqrt{16}*\sqrt{394}=4\sqrt{394}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{394}}{2*-12}=\frac{8-4\sqrt{394}}{-24} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{394}}{2*-12}=\frac{8+4\sqrt{394}}{-24} $

See similar equations:

| Añ7a=16 | | 9(n-837)=504 | | 2x+3(5x-10)=-200 | | 2(3-x)+x=2x+1 | | (1÷2)x-12=(2÷3)x-15 | | x^-7x+12=0 | | 9(n-837=504 | | 3p-3=-27 | | 0=-8/9x-16 | | 6(x-2)+3=-9 | | 20(1.05)^x=300 | | -7.3y-5.18=51.9 | | 5^2x=130 | | 3x-(4-2x)=86 | | 39-(7x)=-4(7x+7)+4 | | t-173/30=18 | | 15b=11-b | | m/7=-1/7 | | 20(1.05)^x-50=250 | | 27^3x=81 | | 87-n=65 | | 20(1.05)^x=250 | | 7z+5+3z=45 | | 4(6-5x)=7x+11 | | 27^3x=180 | | 2(x+15)x2x=x+45xx+40xx+25 | | 1.05^x=15 | | p+52/15=9 | | X×0.15=x-2 | | 10a=-40 | | -19+c÷3=8 | | -7n+2=-75 |

Equations solver categories