If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2-5m-14=0
a = 6; b = -5; c = -14;
Δ = b2-4ac
Δ = -52-4·6·(-14)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-19}{2*6}=\frac{-14}{12} =-1+1/6 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+19}{2*6}=\frac{24}{12} =2 $
| 7/4v=49 | | 7=5h+1 | | 7m^2-7m+1=2m^2+4m-1 | | 3x+2(3x-5)=25 | | n÷7=2 | | 4n+3.8=10.6 | | 2(3x+1)–4x=10 | | 2^(x+1)+4=80 | | -5=8x+1 | | 2^(x+3)+4=80 | | 4=2(2b+1)–6b | | 2(x+3)+4=80 | | 12=2-q | | 4t-84=t | | 0.5 p = p +5 | | 13/7=1x/7 | | 42=3/2y | | 4n+3.7=9.3 | | -.5w+5.8=-1.8w-3.3 | | 3(4x+7)=14x+14-2x+7 | | 2x^2+35x+153=0 | | 4y^2+4=-9y | | -10x^2+13=4 | | -4x+3(-3x-2)=154 | | 77x-99=11(7x-9) | | 9(b-4)-76=(3b-2) | | x+3(1)=1 | | 9x+41x-5=10(5x+5) | | X-2=2+4x-x | | 6^4x=88 | | 6^4x=89 | | (5x+1)(8-1)=0 |