If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m-m=(5/6)(6m-10)
We move all terms to the left:
6m-m-((5/6)(6m-10))=0
Domain of the equation: 6)(6m-10))!=0We add all the numbers together, and all the variables
m∈R
6m-m-((+5/6)(6m-10))=0
We add all the numbers together, and all the variables
5m-((+5/6)(6m-10))=0
We multiply parentheses ..
-((+30m^2+5/6*-10))+5m=0
We multiply all the terms by the denominator
-((+30m^2+5+5m*6*-10))=0
We calculate terms in parentheses: -((+30m^2+5+5m*6*-10)), so:We get rid of parentheses
(+30m^2+5+5m*6*-10)
We get rid of parentheses
30m^2+5m*6*+5-10
We add all the numbers together, and all the variables
30m^2+5m*6*-5
Wy multiply elements
30m^2+30m^2-5
We add all the numbers together, and all the variables
60m^2-5
Back to the equation:
-(60m^2-5)
-60m^2+5=0
a = -60; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-60)·5
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*-60}=\frac{0-20\sqrt{3}}{-120} =-\frac{20\sqrt{3}}{-120} =-\frac{\sqrt{3}}{-6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*-60}=\frac{0+20\sqrt{3}}{-120} =\frac{20\sqrt{3}}{-120} =\frac{\sqrt{3}}{-6} $
| 59+(x-3)=180 | | 4y-10+y+40=7y+30-5y | | (x+1)^2+12=-6 | | -2x+9=-35 | | 10+3(x+1)=1 | | (2w+5)(w8-8)=0 | | 8x=-6-9x | | 25(x^2+160x+120)=0 | | (x-17)+63=180 | | 18z-(8z-7)=67 | | 3.1×t=27.9 | | 10=3/8x-17 | | -8=-2(w-6)+-2 | | 2(76-8x)=89-9x | | 60+(2x+3)+(x-5)=180 | | 2x-34=50 | | (3t-16)/32t^2=0 | | 27x=(-5+28×) | | 12+2/3b=10 | | 4n^2-28=0 | | 4(x-1)^2=-100 | | 5x-4.9x^2=40 | | 18x/810-18x=1 | | 5x−15=40 | | -2x-2÷2+5=-4 | | 4-7x-1=3-7x | | 2a–9=2a+5 | | 5(x-3)-9=26 | | 3(g-17)-3=3 | | x2=144+25 | | 18-5x=2x | | x4+2x3=10x2 |