6m(m-3)+20=8+3m(5-2m)

Simple and best practice solution for 6m(m-3)+20=8+3m(5-2m) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6m(m-3)+20=8+3m(5-2m) equation:



6m(m-3)+20=8+3m(5-2m)
We move all terms to the left:
6m(m-3)+20-(8+3m(5-2m))=0
We add all the numbers together, and all the variables
6m(m-3)-(8+3m(-2m+5))+20=0
We multiply parentheses
6m^2-18m-(8+3m(-2m+5))+20=0
We calculate terms in parentheses: -(8+3m(-2m+5)), so:
8+3m(-2m+5)
determiningTheFunctionDomain 3m(-2m+5)+8
We multiply parentheses
-6m^2+15m+8
Back to the equation:
-(-6m^2+15m+8)
We get rid of parentheses
6m^2+6m^2-15m-18m-8+20=0
We add all the numbers together, and all the variables
12m^2-33m+12=0
a = 12; b = -33; c = +12;
Δ = b2-4ac
Δ = -332-4·12·12
Δ = 513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{513}=\sqrt{9*57}=\sqrt{9}*\sqrt{57}=3\sqrt{57}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-3\sqrt{57}}{2*12}=\frac{33-3\sqrt{57}}{24} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+3\sqrt{57}}{2*12}=\frac{33+3\sqrt{57}}{24} $

See similar equations:

| v-4.14=8.32 | | 238+2x=180 | | j=56÷8 | | 8w–45=5w | | 6m(m-3)+20=8+3m(5-2) | | 200000=(.94x)-7500 | | x(22+x)=196 | | 6(b+8=54 | | x(19+x)=196 | | 1/5+n=3/4 | | 7w+1=6w+12 | | 3q+7=16 | | x+x-15+31=180 | | x(20+x)=196 | | 200000=(1.06x)+7500 | | 35+12x=22x+5 | | 200000=(.06x)+7500 | | 15x+7=112 | | x/11=5/6 | | 11/5+n=33/4 | | 6+4x+2=3x-7+6x | | w=4(19) | | (4-t)/5=3 | | 200000=(1.06x)-7500 | | 4x2-x=0 | | 200000=(.06(x))-7500 | | 180=(3x+25)2x | | 6+4×+2=3x-7+6x | | b9=3 | | 9=15m | | 200000=(.06x)-7500 | | 32+d=28 |

Equations solver categories