68*35*d=30940

Simple and best practice solution for 68*35*d=30940 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 68*35*d=30940 equation:



68*35*d=30940
We move all terms to the left:
68*35*d-(30940)=0
Wy multiply elements
2380d*d-30940=0
Wy multiply elements
2380d^2-30940=0
a = 2380; b = 0; c = -30940;
Δ = b2-4ac
Δ = 02-4·2380·(-30940)
Δ = 294548800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{294548800}=\sqrt{22657600*13}=\sqrt{22657600}*\sqrt{13}=4760\sqrt{13}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4760\sqrt{13}}{2*2380}=\frac{0-4760\sqrt{13}}{4760} =-\frac{4760\sqrt{13}}{4760} =-\sqrt{13} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4760\sqrt{13}}{2*2380}=\frac{0+4760\sqrt{13}}{4760} =\frac{4760\sqrt{13}}{4760} =\sqrt{13} $

See similar equations:

| 5x+1+1=x-6/4 | | 8p+9=7p | | T(n)=100-n | | 2(2x+6)=3(2x+3) | | -3(x-4)=5(4x-1) | | 7=4/z-1 | | 2(8x+6)=3x-9 | | 500=b30/3 | | 500=b(30)/3 | | -5(3x-7)=2(2x-5) | | (1/3)x1=60-(1/2)x2 | | 8x+1=5(5x-3) | | -5(9x+3)=5x-9 | | 8x-3=7x+12/2 | | (25+-1x)(-7=x) | | 8x-7=3(x+4) | | x+(4x+1)+x=180 | | 5(2x-1)=4(2x-4) | | x/14=10/35 | | 5+2x/3=4x+1 | | w+28/w=-1 | | 5x+6=6(2x+9) | | –30=2(p–4)–10 | | 3x=1.5x^2 | | 16h−10h=18 | | 17x−8x=18 | | 17m−8m=18 | | 18(5j−1)+29=47 | | 3=6+8x | | y=1/2y-3 | | 2(5y+1)+16=6+3(y-7) | | 3x+1x=2x+2x |

Equations solver categories