65-21/2x-x=4x+5

Simple and best practice solution for 65-21/2x-x=4x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 65-21/2x-x=4x+5 equation:



65-21/2x-x=4x+5
We move all terms to the left:
65-21/2x-x-(4x+5)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
-1x-21/2x-(4x+5)+65=0
We get rid of parentheses
-1x-21/2x-4x-5+65=0
We multiply all the terms by the denominator
-1x*2x-4x*2x-5*2x+65*2x-21=0
Wy multiply elements
-2x^2-8x^2-10x+130x-21=0
We add all the numbers together, and all the variables
-10x^2+120x-21=0
a = -10; b = 120; c = -21;
Δ = b2-4ac
Δ = 1202-4·(-10)·(-21)
Δ = 13560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13560}=\sqrt{4*3390}=\sqrt{4}*\sqrt{3390}=2\sqrt{3390}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-2\sqrt{3390}}{2*-10}=\frac{-120-2\sqrt{3390}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+2\sqrt{3390}}{2*-10}=\frac{-120+2\sqrt{3390}}{-20} $

See similar equations:

| 6(w+2)=5(1+w) | | 3-1/2w=-3 | | 211x+16=4+611× | | 2w+(18)2=58 | | -2x-1=65 | | 11m+-13+-8=-20 | | 18-3x=6-6x | | -3(3x-3)+5=1x+9 | | -5x+7-3x=-33 | | -206-13x=-2x+135 | | 30x+90=-30 | | 2(6c-1)-2=10c+2 | | 29+x+2x+63=180 | | 12=2(y-1) | | -17b+18b+-19=-11 | | 8x-23•2=10x+44 | | –3z+–1=–4 | | -3.5(x+12)=2x+18 | | 95x+(5x-12)(x+7)=180 | | A(x)=-2x2+36x | | 12n+14=-10n-2 | | |-9+k|=18 | | 34x−18=14x−4 | | Y=64y-5 | | 12n+14=14 | | -4-5=2-(q+3) | | -33-12x=-9x+69 | | b2=29 | | n/3-5=12. | | 13x−14=9x+10 | | 11+3yy=8 | | 6x-192=-8x+60 |

Equations solver categories