If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b2=29
We move all terms to the left:
b2-(29)=0
We add all the numbers together, and all the variables
b^2-29=0
a = 1; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·1·(-29)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{29}}{2*1}=\frac{0-2\sqrt{29}}{2} =-\frac{2\sqrt{29}}{2} =-\sqrt{29} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{29}}{2*1}=\frac{0+2\sqrt{29}}{2} =\frac{2\sqrt{29}}{2} =\sqrt{29} $
| n/3-5=12. | | 13x−14=9x+10 | | 11+3yy=8 | | 6x-192=-8x+60 | | 1.9x+5=1.5x+7 | | d2=49 | | 2+7a–18= | | -14x-30=18+2x | | 7(8)+12=9y-77 | | n+6=-1+2n | | 11d−10d+–4d=–18 | | (x−4)^2=9. | | -3q+27=-5q+25 | | 4(r+2)=0.2(20r+400) | | -11w+15w—5=15 | | 4(r+2)=1/5(20r+400) | | 24x+6=102 | | h/5h+2(11-h)=-5 | | f(6)=(6-3)/(8-6) | | f(-2)=((-2)-3)/(8-(-2)) | | 15x²-10x=5x | | 3x+8+2x+20=68 | | -(z+6)=-3 | | 5^(4x)=29 | | -3(t-8)=22 | | f(8)=(8-3)/(8-8) | | 7n-20=9(4n÷1) | | 3x+5=x^2-4x+17 | | f(9)=(9-3)/(8-9) | | f(21)=6*21+9 | | ⅕x=-2 | | 0.5x-7=0.3(x-12) |