If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64+225=c2
We move all terms to the left:
64+225-(c2)=0
We add all the numbers together, and all the variables
-1c^2+289=0
a = -1; b = 0; c = +289;
Δ = b2-4ac
Δ = 02-4·(-1)·289
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-34}{2*-1}=\frac{-34}{-2} =+17 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+34}{2*-1}=\frac{34}{-2} =-17 $
| x-15=145 | | x-0.08x=950 | | 6(13-s)4s=62$ | | 4x+2-6x-6=4 | | 7+8p=71 | | 37+68+5x=180 | | (x+1)*2=25 | | (x+4)+135=180 | | 15t-1=3t+11 | | 5x+10=40+8× | | 9(a-5)=45 | | 2x+3=3x-5=33 | | 12x-24=18 | | 1=2x+3,11=8x-15 | | 4p(2)+9p-18=0 | | 12n-14n=-60 | | 19x-5+6x+10=180 | | 5x+10=2x-35 | | y+(5(32)-64)=180 | | -20+2x=-4-3x | | y+39=180 | | 13=3+x/5 | | 40x+25x=50 | | -9+4x=6+3x | | x2−3x−1=0 | | 4x+2=3x+3= | | 9x+4=3x-16 | | 5/6x+7=7 | | 6/9=n/36= | | r+4r=2 | | p+17p=8 | | -18+5d=-8 |