If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p(2)+9p-18=0
We add all the numbers together, and all the variables
4p^2+9p-18=0
a = 4; b = 9; c = -18;
Δ = b2-4ac
Δ = 92-4·4·(-18)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{41}}{2*4}=\frac{-9-3\sqrt{41}}{8} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{41}}{2*4}=\frac{-9+3\sqrt{41}}{8} $
| 12n-14n=-60 | | 19x-5+6x+10=180 | | 5x+10=2x-35 | | y+(5(32)-64)=180 | | -20+2x=-4-3x | | y+39=180 | | 13=3+x/5 | | 40x+25x=50 | | -9+4x=6+3x | | x2−3x−1=0 | | 4x+2=3x+3= | | 9x+4=3x-16 | | 5/6x+7=7 | | 6/9=n/36= | | r+4r=2 | | p+17p=8 | | -18+5d=-8 | | (7x-6)+(4x+15)=4x | | 3(4-x)=6x-18 | | 30=7x-9+2x | | 14.75x+105=9.5 | | 3x-2=5x+6=90 | | 3-9r=102 | | 4(p-3.50)=62 | | 7p-8=4p=4 | | 2(5k-1/2)=-1 | | |3v-6|=12 | | y+5(32)-64=180 | | (x−7) =5 | | 4x+11=-88 | | {2}{3}x-10=-12 | | -8+6(4x-7)=242 |