If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63x^2-49+14x=0
a = 63; b = 14; c = -49;
Δ = b2-4ac
Δ = 142-4·63·(-49)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-112}{2*63}=\frac{-126}{126} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+112}{2*63}=\frac{98}{126} =7/9 $
| x=12-1/3*x | | 75=18n+15 | | 14x^2-46x+17=0 | | 16n^2-16n=480 | | 6x=24/7 | | -2.75x=3 | | 2x^2+500x-40000=0 | | 3(v+5)(-v-4)=0 | | 3(b+6)=45 | | 6(b+3)=45 | | 6(b-3)=45 | | 3(b-6)=45 | | -7w/4=42 | | 7b/10+20=35 | | 9a+9=18 | | 2^(2x+1)=9^(2x)+4=0 | | -2x(x)=6.1 | | -3(4b+10)=-51 | | -3(4b+10=-51 | | y=650.000(1+.04)^7 | | 20y-11+4y-6+7y-7=360 | | 0.6=q/10.8 | | 3u+13=22 | | 28-m=17m=9 | | 3.5=2.5hh= | | 3.5=2.5h | | 4/3(4x+12)=9 | | 10p=30p+100 | | 3x8x4=3x() | | 50-6x=80x= | | 6.75+3x=34.25+x | | -2(r-5)-4=36-8r= |