60=1/2(5+7)*h

Simple and best practice solution for 60=1/2(5+7)*h equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 60=1/2(5+7)*h equation:



60=1/2(5+7)*h
We move all terms to the left:
60-(1/2(5+7)*h)=0
Domain of the equation: 2(5+7)*h)!=0
h∈R
We add all the numbers together, and all the variables
-(1/212*h)+60=0
We get rid of parentheses
-1/212*h+60=0
We multiply all the terms by the denominator
60*212*h-1=0
Wy multiply elements
12720h*h-1=0
Wy multiply elements
12720h^2-1=0
a = 12720; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·12720·(-1)
Δ = 50880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{50880}=\sqrt{64*795}=\sqrt{64}*\sqrt{795}=8\sqrt{795}$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{795}}{2*12720}=\frac{0-8\sqrt{795}}{25440} =-\frac{8\sqrt{795}}{25440} =-\frac{\sqrt{795}}{3180} $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{795}}{2*12720}=\frac{0+8\sqrt{795}}{25440} =\frac{8\sqrt{795}}{25440} =\frac{\sqrt{795}}{3180} $

See similar equations:

| 12x-3+5x+12=3x+13 | | 5=-18x | | 9+7(x-3)=10-6(x-1) | | 4x-11=-5×+7 | | 9x^=-2 | | 75=6+9^h/2 | | 9x^2=(-2/9) | | 6(x-11)-8=14x-138 | | 2(n-3)=-13+3n | | 4(x^2)+8x-7=0 | | 9t+1/8=t+9/16+t-7/16 | | 2(v-2)-3=-2(-2v+5)-8v | | n+1/5=3 | | -11/2=3•(-21/3+31/6k•3) | | 11n=-3 | | (x+3)^2-4(x+3)=0 | | 4x+8=-3x+8 | | 9n^2=333 | | 3u-12=5(u-2) | | -3n=11 | | 7t+1=-13 | | 11n=-1/3 | | 2x+4=9x+8 | | 12(z+1)-4(z-2)=3(z-3)+4(z-4) | | n/11=-3 | | 36/4=28/x | | 4*6.25+3k=34.60 | | 5(m+2)+4=-26 | | 11+21x=20+20x | | 3x+14/4+x+12/7=7 | | x^2+35x+96=0 | | 11x-6=8x+15 |

Equations solver categories