60/j=12,j=

Simple and best practice solution for 60/j=12,j= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 60/j=12,j= equation:



60/j=12.j=
We move all terms to the left:
60/j-(12.j)=0
Domain of the equation: j!=0
j∈R
We add all the numbers together, and all the variables
60/j-(+12.j)=0
We get rid of parentheses
60/j-12.j=0
We multiply all the terms by the denominator
-(12.j)*j+60=0
We add all the numbers together, and all the variables
-(+12.j)*j+60=0
We multiply parentheses
-12j^2+60=0
a = -12; b = 0; c = +60;
Δ = b2-4ac
Δ = 02-4·(-12)·60
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{5}}{2*-12}=\frac{0-24\sqrt{5}}{-24} =-\frac{24\sqrt{5}}{-24} =-\frac{\sqrt{5}}{-1} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{5}}{2*-12}=\frac{0+24\sqrt{5}}{-24} =\frac{24\sqrt{5}}{-24} =\frac{\sqrt{5}}{-1} $

See similar equations:

| 67x.8=x | | 3x2–13x+4=0 | | (7y)+2=(2y)-13 | | 3x÷11-9=3 | | 1.25^x=10 | | (1.25)^x=10 | | 5*2^x=160 | | 5x2^x=160 | | 0,01x^2+200x=0 | | 16=2x=4 | | 3a-5a=3+5a | | 2x^2+10x=9975 | | 3x7(4-6)+8-17=÷2 | | 6x-6+4x-8+3x-9=12 | | 15(x+1)+6=2x | | 1/2x+1/3x+1/9x=18 | | 5x-(6x+9)=1÷6 | | 6-x=√5x-6 | | 45+x+135=135+3x+45 | | 5x+13=12x+55 | | -10(s+5)=-27 | | 6x+2=3,8 | | 5p^2-20=180 | | 9x-6x+17=0 | | S=n×180 | | 5(e+3)=35 | | 2x-5=5-1 | | X^2+3x+37=0 | | x^2+14x-223=0 | | 36x+11=12x+103 | | 2-5(25z-30)=3/4(12z+16) | | -(4-2y)+3y=1 |

Equations solver categories