6/y-5=18/y1+1

Simple and best practice solution for 6/y-5=18/y1+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/y-5=18/y1+1 equation:



6/y-5=18/y1+1
We move all terms to the left:
6/y-5-(18/y1+1)=0
Domain of the equation: y!=0
y∈R
Domain of the equation: y1+1)!=0
y∈R
We get rid of parentheses
6/y-18/y1-1-5=0
We calculate fractions
6y/y^2+(-18y)/y^2-1-5=0
We add all the numbers together, and all the variables
6y/y^2+(-18y)/y^2-6=0
We multiply all the terms by the denominator
6y+(-18y)-6*y^2=0
We add all the numbers together, and all the variables
-6y^2+6y+(-18y)=0
We get rid of parentheses
-6y^2+6y-18y=0
We add all the numbers together, and all the variables
-6y^2-12y=0
a = -6; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·(-6)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144}=12$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*-6}=\frac{0}{-12} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*-6}=\frac{24}{-12} =-2 $

See similar equations:

| 0.6666666667(3x+6)=3x-4 | | 4(x-2)-3(x-1)=2x+6 | | -7+4k+4+8k=7k+4k | | X/3+4/3-x/7=x/5+7/5 | | 22x+1=2−5 | | 8r+8=8r+8 | | 4=+(-1)x/2 | | 7x^2+8x=6 | | 3(3x+3)=-6(1-x)+8x | | 9-1/2=5b | | x/7-2=11/14 | | -7-7b=-8(7b+7) | | 6+1/5q=14 | | 2x-5x-20=5+3x-23 | | 12=108-b | | 3x+5x+x=180° | | 6/9=n/45 | | -4a-15=9 | | 3y+10=5y+24 | | 13y-28=50 | | -3x-7-2x+5=6 | | 10n+3=5n+2 | | 2x-32=4x+12 | | 5-n*4=16 | | 5-n•4=16 | | (18-2x)(15-2x)x=250 | | x²-4x-39=6 | | 3x^2-6x+2=-4 | | 5•n-11=24 | | 21=7r=-28 | | x/2=2+3 | | 5*n-11=24 |

Equations solver categories