6/7t-12=3/14t=15

Simple and best practice solution for 6/7t-12=3/14t=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/7t-12=3/14t=15 equation:



6/7t-12=3/14t=15
We move all terms to the left:
6/7t-12-(3/14t)=0
Domain of the equation: 7t!=0
t!=0/7
t!=0
t∈R
Domain of the equation: 14t)!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
6/7t-(+3/14t)-12=0
We get rid of parentheses
6/7t-3/14t-12=0
We calculate fractions
84t/98t^2+(-21t)/98t^2-12=0
We multiply all the terms by the denominator
84t+(-21t)-12*98t^2=0
Wy multiply elements
-1176t^2+84t+(-21t)=0
We get rid of parentheses
-1176t^2+84t-21t=0
We add all the numbers together, and all the variables
-1176t^2+63t=0
a = -1176; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·(-1176)·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3969}=63$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*-1176}=\frac{-126}{-2352} =3/56 $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*-1176}=\frac{0}{-2352} =0 $

See similar equations:

| -16x-19=-67 | | 3/5=7/v | | 8x+4=40+10x | | -84=3(q+72) | | 86=y/8+81 | | 7z-14z+10=32z-28 | | 5/4b+7=7/8b=19 | | 2p+-4=-10 | | 5/6=81/n | | 5=-7+4j | | 8x+14=188 | | -6-2m=10. | | 6yy=10 | | 8x+14=174 | | 9=-9+2v | | 9+4(x-7)=3-6(x-7) | | -x-9=1-x | | 180=(360-x)-x | | 3x+27=26 | | 19x-(3x-8)=72 | | 2/3x^2-2=4 | | 13-4x=-31 | | X+136=x+56 | | 11x-6=9x+14 | | 35=252+-x | | 4(6x+7)-(3x-5)=40 | | 16=w+4 | | 6-4(6x+7)-(3x-5)=40 | | 6(r-4)+3r=12r-8 | | 11x+14=9x | | 3=q-3 | | 1/5+6=3/5x+5 |

Equations solver categories